Understanding the Average Value of a Function

Understanding the Average Value of a Function

December 2, 2024

The average value of a function is a fundamental concept in calculus. It calculates the mean value of a function over a specific interval, making it useful in analyzing performance metrics, trends, and cumulative behaviors in various fields, including mathematics, engineering, and physics.


What is the Average Value of a Function?

The average value of a function over an interval [a,b][a, b] represents the mean output of the function across that range. This is calculated using definite integrals and provides a valuable measure of how the function behaves overall within a given interval.

Formula:

favg=1baabf(x)dxf_{\text{avg}} = \frac{1}{b - a} \int_a^b f(x) \, dx

Components:

  • f(x)f(x): The function whose average value is being computed.
  • [a,b][a, b]: The interval over which the average value is calculated.
  • abf(x)dx\int_a^b f(x) \, dx: The integral representing the total area under the curve.

This formula divides the total area under the curve by the interval length, yielding the average value.


How to Interpret the Average Value of a Function

The average value of a function is essentially the height the function would maintain if its area were evenly distributed across the interval. This single value simplifies the analysis of cumulative behavior in continuous systems.


Steps to Calculate the Average Value

  1. Define the Function and Interval:
    Start with the function f(x)f(x) and its interval [a,b][a, b].

  2. Integrate Over the Interval:
    Compute abf(x)dx\int_a^b f(x) \, dx using integral calculus.

  3. Divide by Interval Length:
    Multiply the integral by 1ba\frac{1}{b - a} to obtain the average value.


Examples

Example 1: f(x)=x2f(x) = x^2 over [0,3][0, 3]

  1. Compute the Integral: 03x2dx=[x33]03=2730=9\int_0^3 x^2 \, dx = \left[\frac{x^3}{3}\right]_0^3 = \frac{27}{3} - 0 = 9
  2. Divide by the Interval Length: favg=1309=3f_{\text{avg}} = \frac{1}{3 - 0} \cdot 9 = 3

Result: The average value is 33.

 f(x) = x^2 ) over ([0, 3]


Example 2: f(x)=sin(x)f(x) = \sin(x) over [0,π][0, \pi]

  1. Compute the Integral: 0πsin(x)dx=[cos(x)]0π=cos(π)+cos(0)=2\int_0^\pi \sin(x) \, dx = \left[-\cos(x)\right]_0^\pi = -\cos(\pi) + \cos(0) = 2
  2. Divide by the Interval Length: favg=1π02=2πf_{\text{avg}} = \frac{1}{\pi - 0} \cdot 2 = \frac{2}{\pi}

Result: The average value is 2π\frac{2}{\pi}.

 f(x) = \sin(x) ) over ([0, \pi]


Practice Problem

Question 1:

Find the average value of the function f(x)=2x2+3f(x) = 2x^2 + 3 over the interval [1,4][1, 4].

Answer:

17\boxed{17}

Explanation:

Step 1: Set Up the Average Value Formula

The average value favgf_{\text{avg}} of a function f(x)f(x) over the interval [a,b][a, b] is given by:

favg=1baabf(x)dxf_{\text{avg}} = \frac{1}{b - a} \int_{a}^{b} f(x) \, dx

For f(x)=2x2+3f(x) = 2x^2 + 3 over [1,4][1, 4]:

favg=14114(2x2+3)dx=1314(2x2+3)dxf_{\text{avg}} = \frac{1}{4 - 1} \int_{1}^{4} (2x^2 + 3) \, dx = \frac{1}{3} \int_{1}^{4} (2x^2 + 3) \, dx

Step 2: Compute the Integral

Integrate f(x)f(x):

(2x2+3)dx=23x3+3x+C\int (2x^2 + 3) \, dx = \frac{2}{3}x^3 + 3x + C

Evaluate from 1 to 4:

[23x3+3x]14=(23(64)+12)(23(1)+3)=1283+12233=1533=51\left[ \frac{2}{3}x^3 + 3x \right]_1^4 = \left( \frac{2}{3}(64) + 12 \right) - \left( \frac{2}{3}(1) + 3 \right) = \frac{128}{3} + 12 - \frac{2}{3} - 3 = \frac{153}{3} = 51

Step 3: Calculate the Average Value

favg=13×51=17f_{\text{avg}} = \frac{1}{3} \times 51 = 17

Question 2:

Determine the average value of f(x)=sin(x)f(x) = \sin(x) on the interval [0,π][0, \pi].

Answer:

2π0.6366\boxed{\dfrac{2}{\pi} \approx 0.6366}

Explanation:

Step 1: Set Up the Average Value Formula

favg=1π00πsin(x)dx=1π0πsin(x)dxf_{\text{avg}} = \frac{1}{\pi - 0} \int_{0}^{\pi} \sin(x) \, dx = \frac{1}{\pi} \int_{0}^{\pi} \sin(x) \, dx

Step 2: Compute the Integral

Integrate f(x)f(x):

sin(x)dx=cos(x)+C\int \sin(x) \, dx = -\cos(x) + C

Evaluate from 0 to π\pi:

[cos(x)]0π=cos(π)(cos(0))=1+1=2\left[ -\cos(x) \right]_0^{\pi} = -\cos(\pi) - (-\cos(0)) = 1 + 1 = 2

Step 3: Calculate the Average Value

favg=2π0.6366f_{\text{avg}} = \frac{2}{\pi} \approx 0.6366

Question 3:

Determine the average value of f(x)=exf(x) = e^{x} over the interval [0,1][0, 1].

Answer:

e11.71828\boxed{e - 1 \approx 1.71828}

Explanation:

Step 1: Set Up the Average Value Formula

favg=11001exdx=01exdxf_{\text{avg}} = \frac{1}{1 - 0} \int_{0}^{1} e^{x} \, dx = \int_{0}^{1} e^{x} \, dx

Step 2: Compute the Integral

Integrate f(x)f(x):

exdx=ex+C\int e^{x} \, dx = e^{x} + C

Evaluate from 0 to 1:

[ex]01=e1e0=e12.718281=1.71828\left[ e^{x} \right]_0^1 = e^{1} - e^{0} = e - 1 \approx 2.71828 - 1 = 1.71828

Step 3: Calculate the Average Value

favg=e11.71828f_{\text{avg}} = e - 1 \approx 1.71828

Question 4:

Determine the average value of f(x)=x34x+1f(x) = x^3 - 4x + 1 on the interval [2,2][-2, 2].

Answer:

1\boxed{1}

Explanation:

Step 1: Set Up the Average Value Formula

favg=12(2)22(x34x+1)dx=1422(x34x+1)dxf_{\text{avg}} = \frac{1}{2 - (-2)} \int_{-2}^{2} (x^3 - 4x + 1) \, dx = \frac{1}{4} \int_{-2}^{2} (x^3 - 4x + 1) \, dx

Step 2: Compute the Integral

Integrate f(x)f(x):

(x34x+1)dx=14x42x2+x+C\int (x^3 - 4x + 1) \, dx = \frac{1}{4}x^4 - 2x^2 + x + C

Evaluate from 2-2 to 22:

[14x42x2+x]22=(14(16)2(4)+2)(14(16)2(4)2)=(2)(6)=4\left[ \frac{1}{4}x^4 - 2x^2 + x \right]_{-2}^{2} = \left( \frac{1}{4}(16) - 2(4) + 2 \right) - \left( \frac{1}{4}(16) - 2(4) - 2 \right) = (-2) - (-6) = 4

Step 3: Calculate the Average Value

favg=14×4=1f_{\text{avg}} = \frac{1}{4} \times 4 = 1